Le CS650 est un capteur intelligent multiparamètre qui utilise des techniques innovantes pour mesurer la teneur en eau volumétrique, la conductivité électrique et la température du sol. Il envoie un signal SDI-12 que beaucoup de nos centrales de mesure peuvent recevoir.
Lire la suiteLa sonde est constituée de deux tiges en acier inoxydable de 30 cm, connectées à un circuit imprimé. Le circuit imprimé est encapsulé dans de l'époxy et un câble blindé câblé à ce circuit, permet de connecter la sonde à une centrale de mesure.
La sonde CS650 mesure le temps de propagation, l’atténuation du signal et la température. La permittivité diélectrique, la teneur en eau volumétrique et la conductivité diélectrique sont ensuite déterminées à partir de ces valeurs brutes.
La mesure de l’atténuation du signal permet de corriger le temps pour lequel la réflexion de l’onde est détectée. Cette correction permet d’améliorer la mesure du temps de propagation. Par conséquent, il est possible de mesurer des teneurs en eau précises sans étalonnage préalable de la sonde dans des sols dont la conductivité ≤3 dS m-1. La conductivité électrique est également calculée par la mesure de l’atténuation du signal.
Une thermistance, en contact thermique avec une tige de la sonde placée, près de la surface de l'époxy, mesure la température. L'installation horizontale du capteur permet une mesure de température du sol et de la teneur en eau volumétrique précise pour la profondeur considérée. La mesure de température dans d'autres orientations sera celle de la région près de l'entrée de la tige située à proximité du boîtier en époxy.
Les abréviations suivantes sont utilisées dans le texte :
CE = Conductivité électrique
VWC = Teneur en eau volumique.
in. = pouce
ft = pied
Veuillez noter : Ce qui suit montre des informations de compatibilité générales. Ce n'est pas une liste complète de tous les produits compatibles.
Produits | Compatibilité | Note |
---|---|---|
CR1000 (obsolète) | ||
CR1000X (obsolète) | ||
CR300 (obsolète) | ||
CR3000 (obsolète) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (obsolète) | ||
CR850 (obsolète) |
Une source extérieure d'interférences peut affecter le bon fonctionnement de la sonde. Ainsi la sonde doit être placée loin d’une source d'interférences, d’une ligne électrique ou d’un moteur.
Plusieurs sondes CS650 peuvent être installées à 10 cm l'une de l'autre, à condition d'utiliser la commande standard "M" de l'instruction SDI-12 de la centrale de mesure. La commande "M" de l'instruction SDI-12 permet qu'à une seule sonde d'être activée à la fois.
Le CS650G (référence 009746) rend l'insertion de la sonde dans le sol plus facile dans les sols compactes ou rocheux. Cet outil peut être martelé dans le sol avec une force qui pourrait endommager le capteur si le CS650G n'était pas utilisé. Il permet de réaliser des ''avant trous" dans lesquels les tiges des sondes peuvent ensuite être insérées. Le CS650G remplace le pilote et le guide d'insertion.
Mesures effectuées | Conductivité électrique (EC), permittivité diélectrique relative, teneur en eau volumétrique (VWC) et température du sol |
Équipement requis | Centrale de mesure |
Type de sol | Les tiges longues avec un grand volume de détection (> 6 L) conviennent aux sols avec une conductivité électrique faible à modérée. |
Tiges | Non remplaçable |
Capteurs | Non interchangeable |
Volume mesuré | 7800 cm3 (~7.5 cm de rayon autour de chaque tige et 4,5 cm en bout de tige) |
Compatibilité Électromagnétique |
Conforme à la norme CE (EN61326 vis à vis de la protection contre les décharges électrostatiques.) |
Température de fonctionnement | -50°C à +70°C |
Sortie du capteur | SDI-12; série RS-232 |
Temps de chauffage | 3 s |
Temps de mesure | 3 ms pour la mesure ; 600 ms pour effectuer la commande SDI-12 complète |
Tension d'alimentation requise | 6 à 18 Vcc (a besoin de 45 mA @ 12 Vcc.) |
Longueur de câble maximum | 610 m en combinant jusqu’à 25 capteurs connectés au même port de contrôle d’une centrale de mesure. |
Espacement entre les tiges | 32 mm (1.3 in.) |
Indice de protection | IP68 |
Diamètre des tiges | 3,2 mm (0.13 in.) |
Longueur des tiges | 300 mm (11.8 in.) |
Dimensions de la tête de la sonde | 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.) |
Poids du câble | 35 g par m (0.38 oz par ft) |
Poids de la sonde | 280 g (9.9 oz) sans câble |
Consommation en courant |
|
Active (3 ms) |
|
Au repos | 135 µA typiquement (@ 12 Vcc) |
Conductivité électrique |
|
Gamme pour solution CE | 0 à 3 dS m-1 |
Gamme CE globale ou volumique | 0 à 3 dS m-1 |
Exactitude de mesure | ±(5% de lecture + 0,05 dS m-1) |
Fidélité de mesure | 0,5% de la CEV (CE volumique) |
Permittivité diélectrique relative |
|
Gamme de mesure | 1 à 81 |
Exactitude de mesure |
|
Fidélité de mesure | < 0,02 |
Teneur en eau volumique |
|
Gamme de mesure | 0 à 100% (avec la commande M4) |
Exactitude de mesure de la teneur en eau |
|
Fidélité de mesure | < 0,05% |
Température du sol |
|
Gamme de mesure | -50°C à +70°C |
Résolution | 0,001°C |
Exactitude de mesure |
|
Fidélité de mesure | ±0,02°C |
Current CS650 and CS655 firmware.
Note: The Device Configuration Utility and A200 Sensor-to-PC Interface are required to upload the included firmware to the sensor.
Nombre de FAQ au sujet de(s) CS650: 53
Développer toutRéduire tout
Campbell Scientific ne recommande pas expressement de raccourcir les tiges du capteur. L'électronique dans la tête du capteur a été optimisée pour fonctionner avec des tiges de 30 cm de long. Le raccourcissement de ces tiges changera la moyenne de la période. Par conséquent, les équations dans le firmware deviendront invalides et donneront des lectures inexactes.
No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil.
For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.
The CS650 has rods that are 30 cm long, and the CS655 has rods that are 12 cm long. The difference in rod length causes some changes in specifications. For example, the CS650 is slightly more accurate in its permittivity and water content readings, but the CS655 works over a larger range of electrical conductivity. In addition, the CS650 handles a larger measurement volume and provides good accuracy in low EC (electrical conductivity) sand and sandy loam. The CS655 is typically more accurate in soil, works well over a wide range of soil textures and EC, and is easier to install because of its shorter rods.
The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.
Probably not. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. Because the permittivity of water is over an order of magnitude higher than that of soil solids, water content has a significant impact on the overall bulk dielectric permittivity of the soil. When the soil becomes very dry, that impact is minimized, and it becomes difficult for the sensor to detect small amounts of water. In air dry soil, there is residual water that does not respond to an electric field in the same way as it does when there is enough water to flow among soil pores. Residual water content can range from approximately 0.03 in coarse soils to approximately 0.25 in clay. In the natural environment, water contents below 0.05 indicate that the soil is as dry as it is likely to get. Very small changes in water content will likely cause a change in the sensor period average and permittivity readings, but, to interpret those changes, a very careful calibration using temperature compensation would need to be performed.
Campbell Scientific does not recommend splicing sensor cables. Sensors may be ordered with custom cable lengths, and Campbell Scientific recommends purchasing the correct length for the application. If the sensor cable needs to be lengthened, a junction box (if practical) is a more favorable option than a splice.
Note: A splice will void the sensor warranty, but a junction box does not modify the sensor and therefore does not void the warranty.
No. The equation used to determine volumetric water content in the firmware for the CS650 and the CS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not necessarily for artificial soils that typically have high organic matter content and high clay content. In this type of soil, the standard equations in the firmware will overestimate water content.
When using a CS650 or a CS655 in artificial soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.
No. The temperature sensor is located inside the sensor’s epoxy head next to one of the sensor rods. The stainless-steel rods are not thermally conductive, so the reported soil temperature reading is actually the temperature of the sensor head. If the CS650 or the CS655 is installed horizontally, which is the preferred method, then the sensor head will be at the same temperature as the soil, and the soil temperature value will be accurate. However, if the sensor is installed vertically, and/or with the sensor head above ground, the soil temperature reading will be less accurate. Because the sensor orientation is not known, no temperature correction was written into the firmware.
Yes. There is surge protection built into the sensor electronics. The sensor survives a surge of 2 kV at 42 ohm line-to-ground on digital I/O and 2 kV at 12 ohm line-to-ground on power. It also survives a surge of 2 kV at 2 ohm line-to-ground on the rods.
If additional surge protection is required, consider using the SVP100 Surge Voltage Protector DIN Rail with Mounting Hardware.
Si un système a plusieurs capteurs CS650 ou CS655, il sera nécessaire de connecter plusieurs fils à une alimentation 12 V et plusieurs fils à la terre. Le kit de montage sur rail DIN est utile pour fixer plusieurs fils à la même source de manière propre et organisée. Pour plus de détails, voir le manuel du kit rail DIN 5458.
D'autres méthodes de connexion de plusieurs fils entre eux, comme les borniers ou des dominos à vis, pourraient également faire l'affaire.