Le CS655 est un capteur multiparamètre intelligent, utilisant des techniques innovantes pour mesurer la teneur en eau volumétrique, la conductivité électrique et la température du sol. Il envoie un signal SDI-12 que beaucoup de nos centrales de mesure peuvent recevoir. Cette sonde a des tiges plus courtes (12 cm) que la sonde CS650, pour des sols plus difficiles à instrumenter.
Lire la suiteLa sonde CS655 est constituée de deux tiges en acier inoxydable de 12 cm de long, connectées à un circuit imprimé. Le circuit imprimé est encapsulé dans de l'époxy et un câble blindé câblé à ce circuit, permet de connecter la sonde à une centrale de mesure.
La sonde CS655 mesure le temps de propagation, l’atténuation du signal et la température. La permittivité diélectrique, la teneur en eau volumétrique et la conductivité diélectrique sont ensuite déterminées à partir de ces valeurs brutes.
La mesure de l’atténuation du signal permet de corriger le temps pour lequel la réflexion de l’onde est détectée. Cette correction permet d’améliorer la mesure du temps de propagation. Par conséquent, il est possible de mesurer des teneurs en eau précises sans étalonnage préalable de la sonde dans des sols dont la conductivité ≤8 dS m-1. La conductivité électrique est également calculée par la mesure de l’atténuation du signal.
Une thermistance, en contact thermique avec une tige de la sonde placée, près de la surface de l'époxy, mesure la température. L'installation horizontale du capteur permet une mesure de température du sol et de la teneur en eau volumétrique précise pour la profondeur considérée. La mesure de température dans d'autres orientations sera celle de la région près de l'entrée de la tige située à proximité du boîtier en époxy.
Les abréviations suivantes sont utilisées dans le texte :
CE = Conductivité électrique
VWC = Teneur en eau volumique.
in. = pouce
ft = pied
Veuillez noter : Ce qui suit montre des informations de compatibilité générales. Ce n'est pas une liste complète de tous les produits compatibles.
Produits | Compatibilité | Note |
---|---|---|
CR1000 (obsolète) | ||
CR1000X (obsolète) | ||
CR300 (obsolète) | ||
CR3000 (obsolète) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (obsolète) | ||
CR850 (obsolète) |
Une source extérieure d'interférences peut affecter le bon fonctionnement de la sonde. Ainsi la sonde doit être placée loin d’une source d'interférences, d’une ligne électrique ou d’un moteur.
De multiples sondes CS655 peuvent être installées à 10 cm l'une de l'autre, à condition d'utiliser la commande standard "M" de l'instruction SDI-12 de la centrale de mesure. La commande "M" de l'instruction SDI-12 permet qu'à une seule sonde d'être activée à la fois.
Le CS650G (référence 009746) rend l'insertion de la sonde dans le sol plus facile dans les sols compactes ou rocheux. Cet outil peut être martelé dans le sol avec une force qui pourrait endommager le capteur si le CS650G n'était pas utilisé. Il permet de réaliser des ''avant trous" dans lesquels les tiges des sondes peuvent ensuite être insérées. Le CS650G remplace le pilote et le guide d'insertion.
Mesures effectuées | Conductivité électrique du sol (EC), permittivité diélectrique relative, teneur en eau volumétrique (VWC) et température du sol |
Équipement requis | Centrale de mesure |
Type de sol | Les tiges courtes sont faciles à installer dans un sol dur. Convient pour les sols avec une conductivité électrique plus élevée. |
Tiges | Non remplaçable |
Capteurs | Non interchangeable |
Volume mesuré | 3600 cm3 (~7.5 cm de rayon autour de chaque tige et 4,5 cm en bout de tige) |
Compatibilité Électromagnétique | Conforme à la norme CE (EN61326 vis à vis de la protection contre les décharges électrostatiques.) |
Température de fonctionnement | -50°C à +70°C |
Sortie du capteur | SDI-12; série RS-232 |
Temps de chauffage | 3 s |
Temps de mesure | 3 ms pour la mesure ; 600 ms pour effectuer la commande SDI-12 complète |
Tension d'alimentation requise | 6 à 18 Vcc (a besoin de 45 mA @ 12 Vcc.) |
Longueur de câble maximum | 610 m (2000 ft) en combinant jusqu’à 25 capteurs connectés au même port de contrôle d’une centrale de mesure. |
Espacement entre les tiges | 32 mm (1.3 in.) |
Indice de protection | IP68 |
Diamètre des tiges | 3,2 mm (0.13 in.) |
Longueur des tiges | 120 mm (4.7 in.) |
Dimensions de la tête de la sonde | 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.) |
Poids du câble | 35 g par m (0.38 oz par ft) |
Poids de la sonde | 240 g (8.5 oz) sans câble |
Consommation en courant |
|
Active (3 ms) | 45 mA typical (@ 12 Vdc) |
Au repos | 135 µA typical (@ 12 Vdc) |
Conductivité électrique |
|
Gamme pour solution CE | 0 à 8 dS/m |
Gamme CE globale ou volumique | 0 à 8 dS/m |
Exactitude de mesure | ±(5% de lecture + 0,05 dS/m) |
Fidélité de mesure | 0,5% de la CEV (CE volumique) |
Permittivité diélectrique relative |
|
Gamme de mesure | 1 à 81 |
Exactitude de mesure |
|
Fidélité de mesure | < 0,02 |
Teneur en eau volumique |
|
Gamme de mesure | 0% à 100% (avec la commande M4) |
Exactitude de mesure de la teneur en eau |
|
Fidélité de mesure | < 0,05% |
Température du sol |
|
Gamme de mesure | -50°C à +70°C |
Résolution | 0,001°C |
Exactitude de mesure |
|
Fidélité de mesure | ±0,02°C |
Current CS650 and CS655 firmware.
Note: The Device Configuration Utility and A200 Sensor-to-PC Interface are required to upload the included firmware to the sensor.
Nombre de FAQ au sujet de(s) CS655: 54
Développer toutRéduire tout
Les modifications apportées au CS650 ou CS655, y compris le raccourcissement du câble, annuleront la garantie. Cependant, le raccourcissement du câble n'affectera pas les performances du capteur. Si une décision est prise pour raccourcir le câble, il faut prendre soin d'éviter d'endommager la gaine du câble et d'exposer le fil nu, sauf aux extrémités qui se connectent aux bornes de la centrale de mesure ou du multiplexeur.
No. The temperature sensor is located inside the sensor’s epoxy head next to one of the sensor rods. The stainless-steel rods are not thermally conductive, so the reported soil temperature reading is actually the temperature of the sensor head. If the CS650 or the CS655 is installed horizontally, which is the preferred method, then the sensor head will be at the same temperature as the soil, and the soil temperature value will be accurate. However, if the sensor is installed vertically, and/or with the sensor head above ground, the soil temperature reading will be less accurate. Because the sensor orientation is not known, no temperature correction was written into the firmware.
Yes. There is surge protection built into the sensor electronics. The sensor survives a surge of 2 kV at 42 ohm line-to-ground on digital I/O and 2 kV at 12 ohm line-to-ground on power. It also survives a surge of 2 kV at 2 ohm line-to-ground on the rods.
If additional surge protection is required, consider using the SVP100 Surge Voltage Protector DIN Rail with Mounting Hardware.
Les dommages sur l'électronique de la CS650 ou à l'électronique du CS655 ou aux tiges ne peuvent être réparées car ces composants sont placés dans l'époxy. Les dégâts sur les câbles, d'autre part, peuvent éventuellement être réparés. Pour plus d'informations, reportez-vous à la page Réparation et étalonnage.
The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.
Campbell Scientific does not recommend using the CS650 or the CS655 to measure water content in compost. A compost pile is a very hostile environment for making dielectric measurements with soil water content sensors. All of the following combine to make it very difficult to determine a calibration function: high temperature, high and varying electrical conductivity, high organic matter content, heterogeneity of the material in the pile, changing particle size, and changing bulk density. The temperature and electrical conductivity values reported by the CS650 or CS655 may give some useful information about processes occurring in the compost pile, but these sensors will not be able to give useful readings for water content.
Non. Le principe qui permet à ces capteurs de fonctionner est que l'eau liquide a une permittivité diélectrique de près de 80, tandis que les particules solides du sol ont une permittivité diélectrique d'environ 3 à 6. Lorsque l'eau liquide gèle, sa permittivité diélectrique baisse à 3,8, comme les particules du sol. Une CS650 ou une CS655 installée dans un sol qui gèle montrera un déclin rapide de sa teneur en eau volumétrique avec des lectures de température correspondantes inférieures à 0°C. Au fur et à mesure que le sol gèle sous la plage de mesure du capteur, les valeurs de la teneur en eau cesseront de changer et resteront stables tant que le sol reste gelé.
The CS650 and the CS655 are not ideal sensors for measuring water level. However, these sensors do respond to the abrupt change in permittivity at the air/water interface. A calibration could be performed to relate the period average or permittivity reading to the distance along the sensor rods where the air/water interface is located. From that, the water level can be determined. The permittivity of water is temperature dependent, so a temperature correction would be needed to acquire accurate results.
Period average and electrical conductivity readings were taken with several sensors in solutions of varying permittivity and varying electrical conductivity at constant temperature. Coefficients were determined for a best fit of the data. The equation is of the form
Ka(σ,τ) = C0*σ3*τ2 + C1*σ2*τ2 + C2*σ*τ2 + C3*τ2 + C4*σ3*τ + C5*σ2*τ + C6*σ*τ + C7*τ + C8*σ3 + C9*σ2 + C10*σ + C11
where Ka is apparent dielectric permittivity, σ is bulk electrical conductivity (dS/m), τ is period average (μS), and C1 to C11 are constants.
No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil.
For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.