CS655 Sonde réflectométrique de teneur en eau du sol (12 cm)

Aperçu

Le CS655 est un capteur multiparamètre intelligent, utilisant des techniques innovantes pour mesurer la teneur en eau volumétrique, la conductivité électrique et la température du sol. Il envoie un signal SDI-12 que beaucoup de nos centrales de mesure peuvent recevoir. Cette sonde a des tiges plus courtes (12 cm) que la sonde CS650, pour des sols plus difficiles à instrumenter.

Lire la suite

Avantages et caractéristiques

  • Large volume de mesure pour réduire les erreurs
  • Mesures corrigées pour les effets de la texture du sol et de la conductivité électrique
  • Estimations de la teneur en eau du sol pour une large gamme de sols
  • Capteur polyvalent-mesure de la permittivité diélectrique, la conductivité électrique (EC) et de la température du sol

Images

Description technique

La sonde CS655 est constituée de deux tiges en acier inoxydable de 12 cm de long, connectées à un circuit imprimé. Le circuit imprimé est encapsulé dans de l'époxy et un câble blindé câblé à ce circuit, permet de connecter la sonde à une centrale de mesure.

La sonde CS655 mesure le temps de propagation, l’atténuation du signal et la température. La permittivité diélectrique, la teneur en eau volumétrique et la conductivité diélectrique sont ensuite déterminées à partir de ces valeurs brutes.

La mesure de l’atténuation du signal permet de corriger le temps pour lequel la réflexion de l’onde est détectée. Cette correction permet d’améliorer la mesure du temps de propagation. Par conséquent, il est possible de mesurer des teneurs en eau précises sans étalonnage préalable de la sonde dans des sols dont la conductivité ≤8 dS m-1. La conductivité électrique est également calculée par la mesure de l’atténuation du signal.

Une thermistance, en contact thermique avec une tige de la sonde placée, près de la surface de l'époxy, mesure la température. L'installation horizontale du capteur permet une mesure de température du sol et de la teneur en eau volumétrique précise pour la profondeur considérée. La mesure de température dans d'autres orientations sera celle de la région près de l'entrée de la tige située à proximité du boîtier en époxy.

Les abréviations suivantes sont utilisées dans le texte :
CE = Conductivité électrique
VWC = Teneur en eau volumique.
in. = pouce
ft = pied


Compatibilité

Veuillez noter : Ce qui suit montre des informations de compatibilité générales. Ce n'est pas une liste complète de tous les produits compatibles.

Centrale de mesure

Produits Compatibilité Note
CR1000 (obsolète)
CR1000X (obsolète)
CR300 (obsolète)
CR3000 (obsolète)
CR310
CR350
CR6
CR800 (obsolète)
CR850 (obsolète)

Informations de compatibilité supplémentaires

Considérations sur les interférences

Sources externes d'interférences

Une source extérieure d'interférences peut affecter le bon fonctionnement de la sonde. Ainsi la sonde doit être placée loin d’une source d'interférences, d’une ligne électrique ou d’un moteur.

Interférences entre les sondes

De multiples sondes CS655 peuvent être installées à 10 cm l'une de l'autre, à condition d'utiliser la commande standard "M" de l'instruction SDI-12 de la centrale de mesure. La commande "M" de l'instruction SDI-12 permet qu'à une seule sonde d'être activée à la fois.

Outil d'installation

CS650G

Le CS650G (référence 009746) rend l'insertion de la sonde dans le sol plus facile dans les sols compactes ou rocheux. Cet outil peut être martelé dans le sol avec une force qui pourrait endommager le capteur si le CS650G n'était pas utilisé. Il permet de réaliser des ''avant trous" dans lesquels les tiges des sondes peuvent ensuite être insérées. Le CS650G remplace le pilote et le guide d'insertion.

Spécifications

Mesures effectuées Conductivité électrique du sol (EC), permittivité diélectrique relative, teneur en eau volumétrique (VWC) et température du sol
Équipement requis Centrale de mesure
Type de sol Les tiges courtes sont faciles à installer dans un sol dur. Convient pour les sols avec une conductivité électrique plus élevée.
Tiges Non remplaçable
Capteurs Non interchangeable
Volume mesuré 3600 cm3 (~7.5 cm de rayon autour de chaque tige et 4,5 cm en bout de tige)
Compatibilité Électromagnétique Conforme à la norme CE (EN61326 vis à vis de la protection contre les décharges électrostatiques.)
Température de fonctionnement -50°C à +70°C
Sortie du capteur SDI-12; série RS-232
Temps de chauffage 3 s
Temps de mesure 3 ms pour la mesure ; 600 ms pour effectuer la commande SDI-12 complète
Tension d'alimentation requise 6 à 18 Vcc (a besoin de 45 mA @ 12 Vcc.)
Longueur de câble maximum 610 m (2000 ft) en combinant jusqu’à 25 capteurs connectés au même port de contrôle d’une centrale de mesure.
Espacement entre les tiges 32 mm (1.3 in.)
Indice de protection IP68
Diamètre des tiges 3,2 mm (0.13 in.)
Longueur des tiges 120 mm (4.7 in.)
Dimensions de la tête de la sonde 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Poids du câble 35 g par m (0.38 oz par ft)
Poids de la sonde 240 g (8.5 oz) sans câble

Consommation en courant

Active (3 ms) 45 mA typical (@ 12 Vdc)
Au repos 135 µA typical (@ 12 Vdc)

Conductivité électrique

Gamme pour solution CE 0 à 8 dS/m
Gamme CE globale ou volumique 0 à 8 dS/m
Exactitude de mesure ±(5% de lecture + 0,05 dS/m)
Fidélité de mesure 0,5% de la CEV (CE volumique)

Permittivité diélectrique relative

Gamme de mesure 1 à 81
Exactitude de mesure
  • ±(3% de lecture + 0,8) Pour une solution de 1 à 40 de conductivité électrique ≤ 8 dS/m.
  • ±2 (Pour une solution de 40 à 81 de conductivité électrique ±2.8 dS/m)
Fidélité de mesure < 0,02

Teneur en eau volumique

Gamme de mesure 0% à 100% (avec la commande M4)
Exactitude de mesure de la teneur en eau
  • ±1% VWC (avec étalonnage spécifique du sol) où la solution CE < 3 dS/m
  • ±3% VWC (typique dans un sol minéral, ou la conductivité électrique de la solution ±10 dS/m.)
Fidélité de mesure < 0,05%

Température du sol

Gamme de mesure -50°C à +70°C
Résolution 0,001°C
Exactitude de mesure
  • ±0,1°C (Pour des température de sol [0°C à 40°C] lorsque la sonde est enterré dans le sol)
  • ±0,5°C (pour toute la plage de température)
Fidélité de mesure ±0,02°C

Téléchargements

CS650 / CS655 Firmware v.2 (429 KB) 02-12-2015

Current CS650 and CS655 firmware. 

Note:  The Device Configuration Utility and A200 Sensor-to-PC Interface are required to upload the included firmware to the sensor.

Historique des révisions

FAQ

Nombre de FAQ au sujet de(s) CS655: 54

Développer toutRéduire tout

  1. Les modifications apportées au CS650 ou CS655, y compris le raccourcissement du câble, annuleront la garantie. Cependant, le raccourcissement du câble n'affectera pas les performances du capteur. Si une décision est prise pour raccourcir le câble, il faut prendre soin d'éviter d'endommager la gaine du câble et d'exposer le fil nu, sauf aux extrémités qui se connectent aux bornes de la centrale de mesure ou du multiplexeur.

  2. No. The temperature sensor is located inside the sensor’s epoxy head next to one of the sensor rods. The stainless-steel rods are not thermally conductive, so the reported soil temperature reading is actually the temperature of the sensor head. If the CS650 or the CS655 is installed horizontally, which is the preferred method, then the sensor head will be at the same temperature as the soil, and the soil temperature value will be accurate. However, if the sensor is installed vertically, and/or with the sensor head above ground, the soil temperature reading will be less accurate. Because the sensor orientation is not known, no temperature correction was written into the firmware.  

  3. Yes. There is surge protection built into the sensor electronics. The sensor survives a surge of 2 kV at 42 ohm line-to-ground on digital I/O and 2 kV at 12 ohm line-to-ground on power. It also survives a surge of 2 kV at 2 ohm line-to-ground on the rods.

    If additional surge protection is required, consider using the SVP100 Surge Voltage Protector DIN Rail with Mounting Hardware

  4. Les dommages sur l'électronique de la CS650 ou à l'électronique du CS655 ou aux tiges ne peuvent être réparées car ces composants sont placés dans l'époxy. Les dégâts sur les câbles, d'autre part, peuvent éventuellement être réparés. Pour plus d'informations, reportez-vous à la page Réparation et étalonnage.

  5. The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.

  6. Campbell Scientific does not recommend using the CS650 or the CS655 to measure water content in compost. A compost pile is a very hostile environment for making dielectric measurements with soil water content sensors. All of the following combine to make it very difficult to determine a calibration function: high temperature, high and varying electrical conductivity, high organic matter content, heterogeneity of the material in the pile, changing particle size, and changing bulk density. The temperature and electrical conductivity values reported by the CS650 or CS655 may give some useful information about processes occurring in the compost pile, but these sensors will not be able to give useful readings for water content.  

  7. Non. Le principe qui permet à ces capteurs de fonctionner est que l'eau liquide a une permittivité diélectrique de près de 80, tandis que les particules solides du sol ont une permittivité diélectrique d'environ 3 à 6. Lorsque l'eau liquide gèle, sa permittivité diélectrique baisse à 3,8, comme les particules du sol. Une CS650 ou une CS655 installée dans un sol qui gèle montrera un déclin rapide de sa teneur en eau volumétrique avec des lectures de température correspondantes inférieures à 0°C. Au fur et à mesure que le sol gèle sous la plage de mesure du capteur, les valeurs de la teneur en eau cesseront de changer et resteront stables tant que le sol reste gelé.

  8. The CS650 and the CS655 are not ideal sensors for measuring water level. However, these sensors do respond to the abrupt change in permittivity at the air/water interface. A calibration could be performed to relate the period average or permittivity reading to the distance along the sensor rods where the air/water interface is located. From that, the water level can be determined. The permittivity of water is temperature dependent, so a temperature correction would be needed to acquire accurate results.  

  9. Period average and electrical conductivity readings were taken with several sensors in solutions of varying permittivity and varying electrical conductivity at constant temperature. Coefficients were determined for a best fit of the data. The equation is of the form

    Ka(σ,τ) = C032 + C122 + C2*σ*τ2 + C32 + C43*τ + C52*τ + C6*σ*τ + C7*τ + C83 + C92 + C10*σ + C11

    where Ka is apparent dielectric permittivity, σ is bulk electrical conductivity (dS/m), τ is period average (μS), and C1 to C11 are constants.

  10. No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil. 

    For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.

Applications

Utah: Flux Stations
The Utah Geological Survey, supported by the Utah Division of Water Rights, has constructed a......En savoir plus
South Africa: Sustainable Solutions for Farms
International partnerships for sustainable innovations Improved water use in agriculture is essential to successfully adapt to......En savoir plus
Chine : Coopération en matière de mesures de flux
Cette étude de cas traite de l'intégration des systèmes CPEC310 et AP200 pour explorer les......En savoir plus

Articles et Communiqués de presse